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Fig. 7. Applications for TouchPower. Two electrodes (shown in blue and orange) are applied to each device. All electrodes

are made from conductive tape. We show TouchPower used in an office setting with a stylus (a) and a presentation remote

controller (b), as well as in a gym setting with a dumb-bell (c) and a gym bike (d). TouchPower can also light a book (e) and

charge a cellphone (f). We zoom in to show the charging status on the top right corner of (f).
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limitations, including the discomfort introduced by the glove, its scalability, and battery maintenance issue. We

also discuss the limitations and potentials of IPT system, including cold reboot, other possible IPT systems, the

establishment of communication links, and suitable use scenarios.

7.1 TouchPower

7.1.1 Glove. A major disadvantage of TouchPower comes from the discomfort introduced by the glove, which

greatly deteriorates the user experience. In this paper, we use a full-fingered glove to better study and evaluate

the power transfer performance of TouchPower. However, TouchPower doesn’t require a full-fingered glove to

function properly. For example, a half-finger glove that covers the thenar and hypothenar eminence is enough

for most gym applications, due to the similar grasp types used with different gym equipment. For scenarios in

which people already wear gloves, TouchPower can be adopted to use the specific type of glove, thus introduces

no extra discomfort.

One promising technique that can help get rid of the glove is skin electronics [22, 23, 26, 42]. The electrodes of

TouchPower could be etched onto ultra thin skin-compatible elastomer and stuck directly on hand. For example,

iSkin [50] makes thin film electrodes (≈100μm) from carbon-filled polydimethylsiloxane (cPDMS), and embeds

them into normal non-conductive PDMS (≈60μm). One application shown in iSkin, FingerStrap, takes the form of

a thin film wrapped around one finger. Five FingerStraps can cover the five fingertips, where the most frequently

used electrodes of TouchPower are placed. Conductive meshes or AgPDMS can be used instead of cPDMS to

reduce resistance.

Another way to remove the glove is to transfer power through bare hands. Previous researches on intrabody

power transfer [36] explored the possibilities to transfer power through human body. However, human body

is quite lossy, so the transfer efficiency is quite low [17, 34]. For TouchPower, however, the transmitting path

through body is much shorter, approximately the length of hand if transmitter is wrist-worn, and even shorter

if it’s finger-worn. The shorter path could deliver higher output power, especially if it is transferred at high

frequencies and high voltages [17]. A better shared ground could also improve power transfer efficiency between

body and the device.

7.1.2 Scalability. We design the user-end of TouchPower to be compatible with as many devices as possible.

The electrodes on glove are carefully arranged to cover the most contacted areas, and the Arduino are programmed

to auto detect load connection between all electrode pairs, and transfer power accordingly. Only seven electrodes

are used in the current implementation, which is limited by the number of GPIO ports of the Arduino Pro Mini.

More electrodes on glove will improve the chances to maintain two electrically separate contact points with the

device, thus provide a more stable power supply. For example, small electrode grids can be used to cover fingers

and the whole palm for more contact points. However, too many electrodes would increase the scan time, which

would slow down the power up process during initial grasp or intermittent realignment. We plan to find the

balance of electrodes number and perceived latency in future studies.

The current algorithm stops scanning and uses the first pair of usable electrodes when load is detected. This

can supply power as fast as possible, but the electrodes used are not necessarily optimal. For example, the used

contact pair may be due to accidental touch, which will rarely happen again during interaction. One solution is

to prioritize the usable pairs based on time, CTR history, etc. The pair that is just used for a long time, or has

highest CTR over a certain period should be tested and used first.

TouchPower requires thoughtful placement of electrodes on the device-end. However, we believe that it’s

not necessary to design electrodes for every device from scratch. In previous sections, we show that similar

arrangements of electrodes can be used for devices held by the same grasp type, with only minor adjustments.

For example, the TV remote, slide remote controller, and cellphone all use medium wrap grasp [5, 8]. They share

a similar arrangement of electrodes on device, with one electrode for four fingers, the other for thenar and
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hypothenar eminences. A bike handle and a dumb bell are both grasped with small diameter grasp [5, 8], and

they share similar electrodes arrangement as well. A study of electrodes placement on a limited number of grasp

types could provide design guidance for a wide range of devices.

Also, there are many ways a device can be picked up and manipulated, and it’s difficult to design electrodes

that work for all of them. However, thoughtful industrial design (e.g. concave surface around electrodes) could

improve the affordance of TouchPower by guiding users’ grasps, and thus help prevent the user’s fingers from

migrating away from electrodes on device during interaction. Visual or sound feedback can also be used to

remind users to realign. For example, an LED could be turned on to indicate the power is on, and turned off

when the power is lost. We also believe more practice with TouchPower may help to mitigate this issue based on

observations in the user study.

7.1.3 Battery Maintenance. For simplicity, the current implementation of TouchPower uses a battery as the

energy source since our focus in this paper is the power transfer process. Even though no power maintenance is

required on the device-end, we still need to charge the on-body battery. However, the energy can come from

batteries within wearable devices on human body (e.g. smart watch), which are already maintained by people. The

on-body batteries can be charged from the environment [19, 54], or from a cellphone in one’s pocket [55]. Also,

the power transfer direction can be reversed to be from off-body devices to an on-body battery, automatically

charging the battery during interaction from plugged in devices like wired mouses, laptops, etc. As explained

in Section 2.1, TouchPower’s battery could also be used as storage of energy harvested from the human body,

eliminating maintenance needs.

7.2 IPT

7.2.1 Cold Reboot. Battery-free devices powered by IPT will be cold rebooted each time, since IPT only

provides just-in-time power. Even though the reboot process is quite short and almost negligible for some devices

(e.g. the mouse and remote controller used in the evaluation), there are some devices that require much longer

time to start up. This leads to large perceived latency and deteriorated user experience. A secondary battery can

solve these issues, supplying power during no interaction period to enable hot reboot. Then during interaction,

IPT systems can both supply power for the device’s normal operation and charge the secondary battery so that

the device can sleep until next interaction. Then such devices will still be power maintenance free even though

there are batteries inside.

7.2.2 More IPT Systems. TouchPower is just one manifestation of an IPT system. The transfer channel for

TouchPower is formed when two electrodes on glove and device make contact. Sometimes such conditions

cannot be met during interaction, such as when we use only one finger to push a button on a remote that is

placed on a table. We’d like to point out that there are other possible IPT systems that could form power transfer

channels with looser constraints than those of TouchPower. For example, IPT systems that transfer power in

electromagnetic (WPT) or acoustic forms do not even require contact between the user and the device.

7.2.3 Communication Links. The current implementation of TouchPower only transfers power when a transfer

channel is formed. The channel could also be used to transfer information at the same time [11], thus establishing

a communication link between the user and device. This will enable much richer interaction experience when

using IPT systems. For example, an IPT enabled stylus could authenticate users by checking the biometrics

measured by and transferred from the on-body transmitter [16].

7.2.4 Use Scenarios. We believe that IPT is especially useful in public spaces, where many people share and

interact with a large number of devices. For example, in a gym there are hundreds of pieces of equipment that

people share with each other. If these were all smart equipment powered by batteries, the maintenance efforts
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would be huge even if the battery in each piece of equipment was changed only once per year. With IPT, however,

power maintenance is not necessary since each piece of equipment is powered up or charged each time it’s being

used.

8 CONCLUSION

The ubiquitous deployment of electronics demands novel power schemes. In this paper, we proposed Interaction-

based Power Transfer, a way to power up power-as-needed electronic devices only during interaction. To prove

the concept of IPT, we designed and implemented TouchPower, a prototype IPT system. We explained in detail

the design of electrode positions and circuits for the user-end of TouchPower, and conducted a user study to

determine the placement of electrodes on the device-end. We then evaluated TouchPower by analyzing subjective

feedback from users. Lastly, we demonstrated various TouchPower applications in living room (TV remote/book),

office (stylus/slides controller), and gym (dumb-bell/bike) environments. We believe our exploration of IPT system

opens up many possibilities for future research, both in affordance of interaction and active power schemes for

ubiquitous electronic devices.
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