Finger Wearables

Finger wearables can support accessible and subtle gesture inputs. They are also close to the interacting object, which makes them ideal for resource sharing. However, finger wearables are challenging to design due to their size constrains. The small size further limits the available computing, I/O, and power resources on such computers.

Figure 1. Users wrap the flexible ring band around the finger and align the magnetic connectors to wear the ring. I/O module are also connected with the main board and battery through the connectors.

To overcome the constrains, I explored modular design for a smart ring (Figure 1). Instead of integrating various I/O functions into one piece of hardware, ModularRing uses switchable I/O modules for interaction. The novel wearing design allows the I/O module to be separated from the wireless MCU and battery. Users can then switch the I/O module based on needs, and combine multiple rings with different I/O modules to create advanced interfaces. For example, a ring with a microphone module and a ring with a speaker module can work together as an audio interface to make a call. ModularRing won Finalist of 2018 Global Innovation Competition and led to three patents.

Figure 2. ThermalRing can recognize gestural inputs on flat surfaces and image passive tags by leveraging the heat radiated from hand.

In ThermalRing, I proposed a novel I/O module-a low-power low-resolution thermal camera for gesture and tag inputs. ThermalRing analyzes the heat silhouette of the hand to recognize drawing gestures on flat surfaces. I also proposed ThermalTag, passive tags that can be easily made using materials with high heat reflectivity (e.g. copper tape). When covered by hand, ThermalTag reflects the heat radiated from the hand and thus can be imaged. This demonstrates how the on-body wearables can work together with off-body tags for more interaction possibilities.

Go to Sensing Tags
Go to Interconnection Techniques

Tengxiang ZHANG
Assistant Research Scientist

I use my hardware and software skills to build interfaces between the physical and digital world.